Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 396
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 7127, 2024 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-38531911

RESUMEN

Although Chaenomeles is widely used in horticulture, traditional Chinese medicine and landscape greening, insufficient research has hindered its breeding and seed selection. This study investigated the floral phenology, floral organ characteristics, palynology, and breeding systems of Chaenomeles speciosa (Sweet) Nakai. The floral characteristics of C. speciosa were observed both visually and stereoscopically. The microstructures of the flower organs were observed using scanning electron microscopy. Pollen stainability was determined using triphenyl tetrazolium chloride staining. Stigma receptivity was determined using the benzidine-H2O2 method and the post-artificial pollination pollen germination method. The breeding system was assessed based on the outcrossing index and pollen-ovule ratio. The flowers of C. speciosa were bisexual with a flowering period from March to April. The flowering periods of single flowers ranged from 8 to 19 d, and those of single plants lasted 18-20 d. The anthers were cylindrical, with the base attached to the filament, and were split longitudinally to release pollen. The flower had five styles, with a connate base. The ovaries had five carpels and five compartments. The inverted ovules were arranged in two rows on the placental axis. The stigma of C. speciosa was dry and had many papillary protrusions. In the early flowering stage (1-2 d of flowering), the pollen exhibited high stainability (up to 84.24%), but all stainability was lost at 7 d of flowering. Storage at - 20 °C effectively delayed pollen inactivation. The stigma receptivity of C. speciosa lasted for approximately 7 days, and the breeding system was classified as outcrossing with partial self-compatibility.


Asunto(s)
Polinización , Rosaceae , Embarazo , Femenino , Humanos , Polinización/fisiología , Óvulo Vegetal , Peróxido de Hidrógeno , Fitomejoramiento , Placenta , Reproducción/fisiología , Flores/fisiología , Polen/fisiología
2.
BMC Plant Biol ; 23(1): 665, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38129795

RESUMEN

Under natural conditions, most Hibiscus syriacus L. individuals form very few mature seeds or the mature seeds that do form are of poor quality. As a result, seed yield is poor and seeds have low natural germinability. These phenomena strongly hinder utilization of the excellent germplasm resources of H. syriacus. The study has shown that pollen activity and stigma receptivity were high on the day of anthesis, and the pistils and stamens were fertile. Pollen release and stigma receptivity were synchronous. But in styles following self and cross-pollination, pollen tube abnormalities (distortion and twisting of the pollen tubes) and callose deposition were observed. Cross-pollinated pollen tubes elongated faster and fewer pollen tube abnormalities were observed compared with self-pollinated pollen tubes. And during embryo development, abnormalities during the heart-shaped embryo stage led to embryo abortion. Imbalance in antioxidant enzyme activities and low contents of auxin and cytokinin during early stages of embryo development may affect embryo development. Therefore, a low frequency of outcrossing and mid-development embryo abortion may be important developmental causes of H. syriacus seed abortion. Nutrient deficiencies, imbalance in antioxidant enzyme activities, and a high content of abscisic acid at advanced stages of seed development may be physiological causes of seed abortion.


Asunto(s)
Hibiscus , Semillas , Antioxidantes , Hibiscus/fisiología , Polen , Polinización/fisiología , Semillas/fisiología
3.
Curr Biol ; 33(11): R530-R542, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37279687

RESUMEN

Self-incompatibility (SI) plays a pivotal role in whether self-pollen is accepted or rejected. Most SI systems employ two tightly linked loci encoding highly polymorphic pollen (male) and pistil (female) S-determinants that control whether self-pollination is successful or not. In recent years our knowledge of the signalling networks and cellular mechanisms involved has improved considerably, providing an important contribution to our understanding of the diverse mechanisms used by plant cells to recognise each other and elicit responses. Here, we compare and contrast two important SI systems employed in the Brassicaceae and Papaveraceae. Both use 'self-recognition' systems, but their genetic control and S-determinants are quite different. We describe the current knowledge about the receptors and ligands, and the downstream signals and responses utilized to prevent self-seed set. What emerges is a common theme involving the initiation of destructive pathways that block the key processes that are required for compatible pollen-pistil interactions.


Asunto(s)
Brassica , Papaver , Brassica/genética , Papaver/genética , Papaver/metabolismo , Polen/metabolismo , Polinización/fisiología , Transducción de Señal/fisiología , Proteínas de Plantas/metabolismo
4.
PeerJ ; 11: e15452, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37334137

RESUMEN

Background: Pollinating insects provide economically and ecologically valuable services, but are threatened by a variety of anthropogenic changes. The availability and quality of floral resources may be affected by anthropogenic land use. For example, flower-visiting insects in agroecosystems rely on weeds on field edges for foraging resources, but these weeds are often exposed to agrochemicals that may compromise the quality of their floral resources. Methods: We conducted complementary field and greenhouse experiments to evaluate the: (1) effect of low concentrations of agrochemical exposure on nectar and pollen quality and (2) relationship between floral resource quality and insect visitation. We applied the same agrochemcial treatments (low concentrations of fertilizer, low concentrations of herbicide, a combination of both, and a control of just water) to seven plant species in the field and greenhouse. We collected data on floral visitation by insects in the field experiment for two field seasons and collected pollen and nectar from focal plants in the greenhouse to avoid interfering with insect visitation in the field. Results: We found pollen amino acid concentrations were lower in plants exposed to low concentrations of herbicide, and pollen fatty acid concentrations were lower in plants exposed to low concentrations of fertilizer, while nectar amino acids were higher in plants exposed to low concentrations of either fertilizer or herbicide. Exposure to low fertilizer concentrations also increased the quantity of pollen and nectar produced per flower. The responses of plants exposed to the experimental treatments in the greenhouse helped explain insect visitation in the field study. The insect visitation rate correlated with nectar amino acids, pollen amino acids, and pollen fatty acids. An interaction between pollen protein and floral display suggested pollen amino acid concentrations drove insect preference among plant species when floral display sizes were large. We show that floral resource quality is sensitive to agrochemical exposure and that flower-visiting insects are sensitive to variation in floral resource quality.


Asunto(s)
Herbicidas , Néctar de las Plantas , Animales , Fertilizantes , Polinización/fisiología , Polen , Insectos/fisiología , Malezas , Agroquímicos , Aminoácidos
5.
Am J Bot ; 110(6): e16199, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37318759

RESUMEN

PREMISE: Many tropical plants are bat-pollinated, but these mammals often carry copious, multispecific pollen loads making bat-pollinated plants susceptible to heterospecific pollen deposition and reproductive interference. We investigated pollen transfer between sympatric bat-pollinated Burmeistera species and their response to heterospecific pollen deposition from each other. METHODS: We quantified conspecific and heterospecific pollen deposition for two populations of B. ceratocarpa, a recipient species in heterospecific pollen transfer interactions, that co-occur with different donor relatives (B. borjensis and B. glabrata). We then used a cross-pollination scheme using pollen mixtures to assess the species' responses to heterospecific pollen deposition in terms of fruit abortion and seed production. RESULTS: Burmeistera ceratocarpa received significantly more heterospecific pollen from its relatives at both sites than its own pollen was deposited on its relatives. However, heterospecific pollen deposition only affected seed production by B. borjensis and B. glabrata, but not by B. ceratocarpa, suggesting that early acting post-pollination barriers buffer the latter against reproductive interference. Crosses between sympatric and allopatric populations suggest that the study species are fully isolated in sympatry, while isolation between allopatric populations is strong but incomplete. CONCLUSIONS: We did not observe evidence of reproductive interference among our study species, because either heterospecific pollen deposition did not affect their seed production (B. ceratocarpa) or they receive heterospecific pollen only rarely (B. borjensis and B. glabrata). Frequent heterospecific pollen deposition might favor the evolution of barriers against foreign pollen (as in B. ceratocarpa) that alleviate the competitive costs of sharing low fidelity pollinators with co-occurring species.


Asunto(s)
Campanulaceae , Quirópteros , Animales , Quirópteros/fisiología , Flores/fisiología , Reproducción/fisiología , Polinización/fisiología , Polen/fisiología
6.
Ann Bot ; 132(1): 107-120, 2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37389585

RESUMEN

BACKGROUND AND AIMS: How well plants reproduce near their geographic range edge can determine whether distributions will shift in response to changing climate. Reproduction at the range edge can be limiting if pollinator scarcity leads to pollen limitation, or if abiotic stressors affect allocation to reproduction. For many animal-pollinated plants with expanding ranges, the mechanisms by which they have overcome these barriers are poorly understood. METHODS: In this study, we examined plant-pollinator interactions hypothesized to impact reproduction of the black mangrove, Avicennia germinans, which is expanding northward in coastal Florida, USA. We monitored insects visiting A. germinans populations varying in proximity to the geographic range edge, measured the pollen loads of the most common insect taxa and pollen receipt by A. germinans stigmas, and quantified flower and propagule production. KEY RESULTS: We found that despite an 84 % decline in median floral visits by insects at northernmost versus southernmost sites, range-edge pollen receipt remained high. Notably, local floral visitor assemblages exhibited substantial turnover along the study's latitudinal gradient, with large-bodied bees and hover flies increasingly common at northern sites. We also observed elevated flower production in northern populations and higher per capita reproductive output at the range edge. Furthermore, mean propagule mass in northern populations was 18 % larger than that from the southernmost populations. CONCLUSIONS: These findings reveal no erosion of fecundity in A. germinans populations at range limits, allowing rapid expansion of mangrove cover in the region. These results also illustrate that substantial turnover in the assemblage of flower-visiting insects can occur at an expanding range edge without altering pollen receipt.


Asunto(s)
Polinización , Reproducción , Abejas , Animales , Polinización/fisiología , Insectos/fisiología , Flores/fisiología , Polen/fisiología
7.
Am J Bot ; 110(6): e16198, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37342959

RESUMEN

PREMISE: Deceptive pollination, a fascinating mechanism that independently originated in several plant families for benefiting from pollinators without providing any reward, is particularly widespread among orchids. Pollination efficiency is crucial in orchids due to the aggregated pollen in a pollinarium, which facilitates pollen transfer and promotes cross-pollination as pollinators leave after being deceived. METHODS: In this study, we compiled data on reproductive ecology from five orchid species with different pollination strategies: three deceptive-strategy species (shelter imitation, food deception, sexual deception), one nectar-rewarding species, and one shelter-imitation but spontaneously selfing species. We aimed to compare the reproductive success (female fitness: fruit set; male fitness: pollinarium removal) and pollination efficiency of species representing these strategies. We also investigated pollen limitation and inbreeding depression among the pollination strategies. RESULTS: Male and female fitness were strongly correlated in all species but the spontaneously selfing species, which had high fruit set and low pollinarium removal. As expected, pollination efficiency was highest for the rewarding species and the sexually deceptive species. Rewarding species had no pollen limitation but did have high cumulative inbreeding depression; deceptive species had high pollen limitation and moderate inbreeding depression; and spontaneously selfing species did not have pollen limitation or inbreeding depression. CONCLUSIONS: Pollinator response to deception is critical to maintain reproductive success and avoid inbreeding in orchid species with non-rewarding pollination strategies. Our findings contribute to a better understanding of the trade-offs associated with different pollination strategies in orchids and highlight the importance of pollination efficiency in orchids due to the pollinarium.


Asunto(s)
Orchidaceae , Polinización , Polinización/fisiología , Orchidaceae/fisiología , Reproducción , Polen/fisiología , Néctar de las Plantas , Flores/fisiología
8.
Environ Entomol ; 52(3): 416-425, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37170880

RESUMEN

Sustainable production of pumpkin (Cucurbita maxima Duchesne) partly relies on integrated pest management (IPM) and pollination services. A farmer-managed field study was carried out in Yatta and Masinga Sub-Counties of Machakos County, Kenya, to determine the effectiveness of a recommended IPM package and its interaction with stingless bee colonies (Hypotrigona sp.) for pollinator supplementation (PS). The IPM package comprised Lynfield traps with cuelure laced with the organophosphate malathion, sprays of Metarhizium anisopliae (Mechnikoff) Sorokin isolate ICIPE 69, the most widely used fungal biopesticide in sub-Saharan Africa, and protein baits incorporating spinosad. Four treatments-IPM, PS, integrated pest and pollinator management (which combined IPM and PS), and control-were replicated 4 times. The experiment was conducted in 600 m2 farms in 2 normalized difference vegetation index (NDVI) classes during 2 growing seasons (October 2019-March 2020 and March-July 2020). Fruits showing signs of infestation were incubated for emergence, fruit fly trap catches were counted weekly, and physiologically mature fruits were harvested. There was no effect of IPM, PS, and NDVI on yield across seasons. This study revealed no synergistic effect between IPM and PS in suppressing Tephritid fruit fly population densities and damage. Hypotrigona sp. is not an efficient pollinator of pumpkin. Therefore, we recommend testing other African stingless bees in pumpkin production systems for better pollination services and improved yields.


Asunto(s)
Cucurbita , Cucurbitaceae , Abejas , Animales , Kenia , Control de Plagas , Polinización/fisiología , Suplementos Dietéticos
9.
Ann Bot ; 132(1): 1-14, 2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37220889

RESUMEN

BACKGROUND: Plants often use floral displays to attract mutualists and prevent antagonist attacks. Chemical displays detectable from a distance include attractive or repellent floral volatile organic compounds (FVOCs). Locally, visitors perceive contact chemicals including nutrients but also deterrent or toxic constituents of pollen and nectar. The FVOC and pollen chemical composition can vary intra- and interspecifically. For certain pollinator and florivore species, responses to these compounds are studied in specific plant systems, yet we lack a synthesis of general patterns comparing these two groups and insights into potential correlations between FVOC and pollen chemodiversity. SCOPE: We reviewed how FVOCs and non-volatile floral chemical displays, i.e. pollen nutrients and toxins, vary in composition and affect the detection by and behaviour of insect visitors. Moreover, we used meta-analyses to evaluate the detection of and responses to FVOCs by pollinators vs. florivores within the same plant genera. We also tested whether the chemodiversity of FVOCs, pollen nutrients and toxins is correlated, hence mutually informative. KEY RESULTS: According to available data, florivores could detect more FVOCs than pollinators. Frequently tested FVOCs were often reported as pollinator-attractive and florivore-repellent. Among FVOCs tested on both visitor groups, there was a higher number of attractive than repellent compounds. FVOC and pollen toxin richness were negatively correlated, indicating trade-offs, whereas a marginal positive correlation between the amount of pollen protein and toxin richness was observed. CONCLUSIONS: Plants face critical trade-offs, because floral chemicals mediate similar information to both mutualists and antagonists, particularly through attractive FVOCs, with fewer repellent FVOCs. Furthermore, florivores might detect more FVOCs, whose richness is correlated with the chemical richness of rewards. Chemodiversity of FVOCs is potentially informative of reward traits. To gain a better understanding of the ecological processes shaping floral chemical displays, more research is needed on floral antagonists of diverse plant species and on the role of floral chemodiversity in visitor responses.


Asunto(s)
Polinización , Compuestos Orgánicos Volátiles , Animales , Polinización/fisiología , Flores/fisiología , Néctar de las Plantas/análisis , Insectos , Polen/fisiología , Compuestos Orgánicos Volátiles/metabolismo
10.
Dev Cell ; 58(5): 335-337, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36917929

RESUMEN

In a recent issue of Nature, Huang et al. identify and show how to overcome the barriers to successful pollen germination after interspecific crosses.1 Their findings answer a long-standing question about reproductive barriers in flowering plants and open the door to harnessing genetic diversity of distant relatives for crop improvement.


Asunto(s)
Cruzamientos Genéticos , Flores , Germinación , Magnoliopsida , Polen , Polinización , Flores/genética , Magnoliopsida/genética , Magnoliopsida/fisiología , Polen/genética , Polinización/genética , Polinización/fisiología , Reproducción , Germinación/fisiología , Hibridación Genética
11.
Sci Rep ; 13(1): 3099, 2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36813829

RESUMEN

Response diversity to environmental change among species is important for the maintenance of ecosystem services, but response diversity to changes in multiple environmental parameters is largely unexplored. Here, we examined how insect visitations to buckwheat flowers differ among species groups in response to changes in multiple weather variables and landscape structures. We found differences in responses to changes in weather conditions among insect taxonomic groups visiting buckwheat flowers. Beetles, butterflies, and wasps were more active in sunny and/or high-temperature conditions, whereas ants and non-syrphid flies showed the opposite pattern. When looking closely, the different response pattern among insect groups was itself shown to be different from one weather variable to another. For instance, large insects were responsive to temperatures more than small insects while smaller insects were responsive to sunshine duration more than large insects. Furthermore, responses to weather conditions differed between large and small insects, which agreed with the expectation that optimal temperature for insect activity depends on body size. Responses to spatial variables also differed; large insects were more abundant in fields with surrounding forests and mosaic habitats, whereas small insects were not. We suggest that response diversity at multiple spatial and temporal niche dimensions should be a focus of future studies of the biodiversity-ecosystem service relationships.


Asunto(s)
Productos Biológicos , Mariposas Diurnas , Fagopyrum , Animales , Polinización/fisiología , Ecosistema , Insectos/fisiología , Flores/fisiología , Tiempo (Meteorología)
12.
New Phytol ; 237(2): 672-683, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36229922

RESUMEN

The individual and combined effects of abiotic factors on pollinator-mediated selection on floral traits are not well documented. To examine potential interactive effects of water and nutrient availability on pollinator-mediated selection on three floral display traits of Primula tibetica, we manipulated pollination and nutrient availability in a factorial experiment, conducted at two common garden sites with different soil water content (natural vs addition). We found that both water and nutrient availability affected floral trait expression in P. tibetica and that hand pollination increased seed production most when both nutrient content and water content were high, indicating joint pollen and resource limitation. We documented selection on all floral traits, and pollinators contributed to directional and correlational selection on plant height and number of flowers. Soil water and nutrient availability interactively influenced the strength of both pollinator-mediated directional and correlational selection, with significant selection observed when nutrient or water availability was high, but not when none or both were added. The results suggest that resource limitation constrains the response of P. tibetica to among-individual variation in pollen receipt, that addition of nutrients or water leads to pollinator-mediated selection and that effects of the two abiotic factors are nonadditive.


Asunto(s)
Flores , Primula , Flores/fisiología , Polen/fisiología , Polinización/fisiología , Primula/anatomía & histología , Selección Genética , Suelo/química , Agua/análisis , Nutrientes/análisis , Nutrientes/metabolismo
13.
Am J Bot ; 110(3): 1-14, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36571456

RESUMEN

PREMISE: Changes to flowering time caused by climate change could affects plant fecundity, but studies that compare the individual-level responses of phenologically distinct, co-occurring species are lacking. We assessed how variation in floral phenology affects the fecundity of individuals from three montane species with different seasonal flowering times, including in snowmelt acceleration treatments to increase variability in phenology. METHODS: We collected floral phenology and seed set data for individuals of three montane plant species (Mertensia fusiformis, Delphinium nuttallianum, Potentilla pulcherrima). To examine the drivers of seed set, we measured conspecific floral density and conducted pollen limitation experiments to isolate pollination function. We advanced the phenology of plant communities in a controlled large-scale snowmelt acceleration experiment. RESULTS: Differences in individual phenology relative to the rest of the population affected fecundity in our focal species, but effects were species-specific. For our early-season species, individuals that bloomed later than the population peak bloom had increased fecundity, while for our midseason species, simply blooming before or after the population peak increased individual fecundity. For our late-season species, blooming earlier than the population peak increased fecundity. The early and midseason species were pollen-limited, and conspecific density affected seed set only for our early-season species. CONCLUSIONS: Our study shows that variation in individual phenology affects fecundity in three phenologically distinct montane species, and that pollen limitation may be more influential than conspecific density. Our results suggest that individual-level changes in phenology are important to consider for understanding plant reproductive success.


Asunto(s)
Flores , Polinización , Flores/fisiología , Polinización/fisiología , Reproducción/fisiología , Polen , Semillas/fisiología , Estaciones del Año
14.
Ann Bot ; 131(2): 361-372, 2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36579432

RESUMEN

BACKGROUND AND AIMS: Nectar standing crop has a fundamental role in controlling pollinator movements between flowers and individuals within a population. In bat pollination systems, plants take advantage of the cognitive abilities of nectarivorous bats, which integrate complex perceptions of the quality and spatial distribution of resources. Here, we propose that associations between standing crop and pollen transfer help to reveal the role of nectar as a manipulator of pollinator behaviour. METHODS: We used Harpochilus neesianus Ness (Acanthaceae), a bat-pollinated shrub from the Brazilian Caatinga, as a model system to assess nectar removal effects and standing crop, respectively, over the night and to test associations between the amount of nectar available to pollinators, and pollen import and export. KEY RESULTS: Harpochilus neesianus showed continuous nectar secretion throughout the flower lifespan. Flowers subjected to successive nectar removals produced less nectar than flowers sampled just once, and showed, despite a higher sugar concentration, a lower absolute amount of sugar. Under these conditions, bats may realize that nectar production is decreasing after repeated visits to the same flower and could be manipulated to avoid such already pollinated flowers with little nectar, thus increasing the probability of visits to flowers with a high amount of nectar, and a still high pollen availability on anthers and low pollen deposition on stigmas. We found that during most of the period of anthesis, nectar standing crop volume was positively correlated with the number of pollen grains remaining in the anthers, and negatively with the number of pollen grains deposited on the stigma. CONCLUSIONS: Nectar secretion patterns can function as a manipulator of pollinating bats in H. neesianus. We propose that the assessment of variability in nectar secretion in response to removal, and the correlation between nectar standing crop and relative pollen transfer throughout anthesis should be considered in order to understand the role of nectar in the manipulation of pollinators.


Asunto(s)
Quirópteros , Néctar de las Plantas , Animales , Quirópteros/fisiología , Aves/fisiología , Polinización/fisiología , Flores/fisiología , Polen/fisiología , Azúcares
15.
Protoplasma ; 260(4): 1047-1062, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36512090

RESUMEN

The flowers of the species of Malpighiaceae in the Neotropical Region are relatively uniform in their morphology due to their dependence on oil-collecting bees as their main pollinators. However, many species of the genus Galphimia seem to have acquired a different floral syndrome, lacking markedly zygomorphic flowers and developed elaiophores in the calyx. Likewise, these species present anthers with great development, probably in response to the selection of pollinators that collect pollen. Galphimia australis incorporated some of these traits but also retained some residual characteristics typical of species pollinated by oil bees. This leads to many questions on how these flowers ensure their pollination. Inquiring about the reduction or modification of these characteristics allows us to understand how G. australis achieves a different pollination syndrome. In this research, we carry out a detailed morphological and anatomical study of the flowers and pollen grain devolvement of G. australis and floral visitors were observed and captured. Results were analyzed in order to determine how this species changed from the oil-floral syndrome, typical of neotropical Malpighiaceae, to one syndrome with pollen as the main reward.


Asunto(s)
Galphimia , Malpighiaceae , Animales , Abejas , Polinización/fisiología , Malpighiaceae/fisiología , Flores/anatomía & histología , Polen/fisiología
16.
Sci Rep ; 12(1): 21802, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36526706

RESUMEN

Annual plants allocate soil nutrients to floral display and pollinator rewards to ensure pollination success in a single season. Nitrogen and phosphorus are critical soil nutrients whose levels are altered by intensive land use that may affect plants' fitness via pollinator attractiveness through floral display and rewards. In a controlled greenhouse study, we studied in cucumbers (Cucumis sativus) how changes in soil nitrogen and phosphorus influence floral traits, including nectar and pollen reward composition. We evaluated how these traits affect bumble bee (Bombus impatiens, an important cucumber pollinator) visitation and ultimately fruit yield. While increasing nitrogen and phosphorus increased growth and floral display, excess nitrogen created an asymptotic or negative effect, which was mitigated by increasing phosphorus. Male floral traits exhibited higher plasticity in responses to changes in soil nutrients than female flowers. At 4:1 nitrogen:phosphorus ratios, male flowers presented increased nectar volume and pollen number resulting in increased bumble bee visitation. Interestingly, other pollinator rewards remained consistent across all soil treatments: male and female nectar sugar composition, female nectar volume, and pollen protein and lipid concentrations. Therefore, although cucumber pollination success was buffered in conditions of nutrient stress, highly skewed nitrogen:phosphorus soil ratios reduced plant fitness via reduced numbers of flowers and reward quantity, pollinator attraction, and ultimately yield.


Asunto(s)
Cucumis sativus , Néctar de las Plantas , Abejas , Animales , Suelo , Polinización/fisiología , Flores/fisiología , Plantas , Fósforo , Nitrógeno
17.
BMC Plant Biol ; 22(1): 514, 2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36329386

RESUMEN

BACKGROUND: Grazing disturbance usually affects floral display and pollination efficiency in the desert steppe, which may cause pollen limitation in insect-pollinated plants. Effective pollination is essential for the reproductive success of insect-pollinated plants and insufficient pollen transfer may result in pollen limitation. Caragana microphylla Lam is an arid region shrub with ecological importance. Few studies have been conducted on how grazing disturbance influences pollen limitation and pollination efficiency of C. microphylla. Here, we quantify the effect of different grazing intensities on floral display, pollinator visitation frequency and seed production in the Urat desert steppe. RESULTS: In C. microphylla, supplemental hand pollination increased the seed set, and pollen limitation was the predominant limiting factor. As the heavy grazing significantly reduced the seed set in plants that underwent open-pollination, but there was no significant difference in the seed set between plants in the control plots and plants in the moderate grazing plots. Furthermore, there was a higher pollinator visitation frequency in plants in the control plots than in plants in the heavy grazing plots. CONCLUSIONS: We found that pollinator visitation frequency was significantly associated with the number of open flowers. Our findings also demonstrated that seed production is associated with pollinator visitation frequency, as indicated by increased seed production in flowers with higher pollinator visitation frequency. Therefore, this study provides insight into the effect of different grazing intensities on floral display that are important for influencing pollinator visitation frequency and pollination efficiency in desert steppes.


Asunto(s)
Flores , Herbivoria , Insectos , Polen , Polinización , Animales , Flores/fisiología , Insectos/fisiología , Plantas/parasitología , Polinización/fisiología , Clima Desértico , Herbivoria/fisiología
18.
PeerJ ; 10: e14107, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36196403

RESUMEN

Flowers are generally short-lived, and they all face a multidimensional challenge because they have to attract mutualists, compel them to vector pollen with minimal investment in rewards, and repel floral enemies during this short time window. Their displays are under complex selection, either consistent or conflicting, to maximize reproductive fitness under heterogeneous environments. The phenological or morphological mismatches between flowers and visitors will influence interspecific competition, resource access, mating success and, ultimately, population and community dynamics. To better understand the effects of the plant visitors on floral traits, it is necessary to determine the functional significance of specific floral traits for the visitors; how plants respond to both mutualists and antagonists through adaptive changes; and to evaluate the net fitness effects of biological mutualisms and antagonism on plants. In this review, we bring together insights from fields as diverse as floral biology, insect behavioral responses, and evolutionary biology to explain the processes and patterns of floral diversity evolution. Then, we discuss the ecological significance of plant responses to mutualists and antagonists from a community perspective, and propose a set of research questions that can guide the research field to integrate studies of plant defense and reproduction.


Asunto(s)
Flores , Polinización , Polinización/fisiología , Flores/fisiología , Plantas , Reproducción , Polen
19.
Am J Bot ; 109(11): 1875-1892, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36063430

RESUMEN

PREMISE: In the absence of hawkmoth pollinators, chasmogamous (CH) flowers of Ruellia humilis self-pollinate by two secondary mechanisms. Other floral visitors might exert selection on CH floral traits to restore outcrossing, but at the same time preferential predation of CH seeds generates selection to increase the allocation of resources to cleistogamous (CL) flowers. METHODS: To assess the potential for an evolutionary response to these competing selection pressures, we estimated additive genetic variances ( σ A 2 ${\sigma }_{{\rm{A}}}^{2}$ ) and covariances for 14 reproductive traits and three fitness components in a Missouri population lacking hawkmoth pollinators. RESULTS: We found significant σ A 2 ${\sigma }_{{\rm{A}}}^{2}$ for all 11 floral traits and two measures of resource allocation to CL flowers, indicating the potential for a short-term response to selection on most reproductive traits. Selection generated by seed predators is predicted to increase the percentage of CL flowers by 0.24% per generation, and mean stigma-anther separation is predicted to decrease as a correlated response, increasing the fraction of plants that engage in prior selfing. However, the initial response to this selection is opposed by strong directional dominance. CONCLUSIONS: The predicted evolutionary decrease in the number of CH flowers available for potential outcrossing, combined with the apparent preclusion of potential diurnal pollinators by the pollen-harvesting activities of sweat bees, suggest that 100% cleistogamy is the likely outcome of evolution in the absence of hawkmoths. However, rare mutations with large effects, such as delaying budbreak until after sunrise, could provide pathways for the restoration of outcrossing that are not reachable by gradual quantitative-genetic evolution.


Asunto(s)
Acanthaceae , Manduca , Abejas , Animales , Polinización/fisiología , Flores/genética , Polen/genética , Acanthaceae/fisiología , Reproducción
20.
Am J Bot ; 109(11): 1730-1740, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36088615

RESUMEN

PREMISE: In many flowering plants, flowers contain more ovules than fruits have seeds. What determines which ovules become seeds? When photosynthates are limited, as may happen when plants lose leaf area to herbivory, fewer fertilized ovules become seeds. METHODS: Greenhouse-grown ramets of distinct individuals of a perennial herbaceous legume were manually defoliated to various levels determined in the field, then self- or cross-pollinated. For each seed produced, we recorded its position in the fruit and its mass. From a subset of seeds from different treatments and positions in the fruits, we grew seedlings and measured their dry mass. RESULTS: Ovules were aborted more frequently in fruits from flowers that were self-pollinated and from those on plants with higher levels of defoliation. Ovules in the basal portion of the fruits were more likely to be aborted than those at the stigmatic end; this pattern was most pronounced for fruits after self-pollination with high levels of defoliation. Total number of seeds produced and seed mass per pod were greatest in cross-pollinated fruits after no or low levels of defoliation. Mean individual seed mass was greater for fruits with fewer seeds, indicating a trade-off between seed number and seed mass. Seedling dry mass (a measure of vigor) was greatest for seeds in the middle positions of fruit produced by cross-pollination after severe herbivory; no positional differences were seen for seeds from self-pollinated fruits. CONCLUSIONS: Observed locations of seed abortion may have been selected not only by defoliation, but in part by propensity for dispersal, while positional differences in seedling vigor may be related to seed size and differential maternal allocation based on pollination treatment and leaf area lost.


Asunto(s)
Fabaceae , Semillas/fisiología , Polinización/fisiología , Polen/fisiología , Flores/fisiología , Plantones , Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA